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Regularized regression

Classification through 
logistic regression



Outline  2

▪ Overfitting/underfitting and regularization
▪ Logistic regression

▪ Announcements:
• Check moodle for past year’s exams and quizzes



3Introduction Logistic regression Linear regression 

KNN 

Clustering 

Neural networks Convolutional neural 
networks 

Naive Bayes

Decision-trees  

Dimensionality reduction Reinforcement learning 

AI ethics



4Review of linear regression

• Linear model:


• Mean-Square-Error (MSE) loss
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Underfitting and overfitting



Underfitting & Overfitting

Goal of supervised ML models: generalise well on new data (based on 
the patterns learned from known data). 

Ways ML can fail 
• Underfitting 
• Overfitting

6

·
model too simple ,

not enough date



Overfitting 
Q: What if the ML model is too complex? 

Overfitting model: 
• Fits well on training data 
• Doesn’t generalise well to unknown data. 

Reason: the model is too complex  it fits the noises and errors. 

The model passes by every data point but doesn’t capture the U shape of the data set.

→
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Overfitting - Solutions
Solutions:  

• Simpler model  fit the data and not the noises and errors. 

• More training data (  less effect of noise) 

• Add a regularisation term (common solution) 

Goal: Find the equilibrium between fitting the training data and keeping the model 
simple enough to ensure it will generalise well on new data.

→
→

Underfitting & Overfitting 8



9Sensitivity and Regularization

• Sensitivity of a predictor: similar data should lead to similar outcome


• Less sensitive models tend to not overfit c , x' EIRI
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10Sensitivity of linear models
Motivation for regularization through Lipschitz constant of the predictor
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• Regularised loss function


• Find the gradient of the regularized loss function with respect to the parameters


• Next - how do we set the regularization parameter       ? 

11Exercise - optimize a regularized loss function
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Setting hyperparameters: example, the regulariser

Your Dataset

Train, validate, test in ML



Your Dataset

Idea #1: Split data into train and test, choose 
hyperparameters that work best on test data 

Train Test

BAD: No idea how 
algorithm will perform 
on new data

Train, validate, test in ML
Setting hyperparameters: example, the regulariser



Train, validate, test in ML
Setting hyperparameters 

Your Dataset

Idea #1: Split data into train and test, choose 
hyperparameters that work best on test data 

Train Test

Idea #2: Split data into train, val and test, 
choose hyperparameters on val and evaluate 
on test

Train TestValidation

Better!

Problem: No idea 
how algorithm will 
perform on new data



Setting hyperparameters 
Your Dataset

Idea #3: Cross-Validation : Split data into folds, try each fold as 
validation and average the results 

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

Useful for small datasets

TestFold 5Fold 4Fold 3Fold 2Fold 1

TestFold 5Fold 4Fold 3Fold 2Fold 1

Train, validate, test in ML



Logistic Regression
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17Classification

Palmer Penguins 

Based on dataset available here: https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris
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Characterize a classifier based on a linear model
Logistic Regression

Goal:  find a line/hyperplane separating the classes 

Ex: w = [
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Defining loss function for classification
Optional
Consider clasiber

: class 1 if 2 0
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Logistic loss function
A differentiable and convex loss for binary classification

Read more about logistic function/verify your gradient computation here: https://en.wikipedia.org/wiki/Logistic_function
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Training - Minimizing the logistic loss function
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22Exercise

Consider the sigmoid function , . Compute . Use the chain 

rule to compute , where  and.  

Compute the gradient of the binary cross-entropy loss function with respect to the parameters 

 

You can check your answers with the notes in the python exercises this week. 

σ : ℝ → (0,1) σ(z) = 1
1 + e−z

dσ(z)
dz

dσ(z(w))
dw

z = w0 + w1x1 + … + wdxd w = (w0, w1, …, wd)

w = (w0, w1, …, wd)



Probabilistic interpretation of logistic function 23

 σ(z) = 1
1 + e−z

σ : ℝ → (0,1)

Consider the regression 

•    
Followed by the logistic function
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1 + e−(wT xi+b)

▪  = estimated probability of class 1 on input  
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Probability distributions background 24
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Cross entropy of a distribution relative to another 25
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Interpretation as binary cross-entropy loss
Logistic loss 

By interpreting the logistic function as probability of a label,  

The cross-entropy between the true (unknown) distribution and the estimated distribution 

The cross entropy loss below, is the same as the logistic loss
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27Logistic regression output

Palmer Penguins 

Based on dataset available here: https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris



28Logistic regression exercise this week
▪ Dataset 1: Void Formation in Welding, based on the paper
▪ Goal: formation of voids in friction stir welding as a function of the operation conditions

• Tool rotational speed, axial pressure
• The label: void or not void

▪ Dataset 2:  discriminate between sonar signals bounced off a mine (metal cylinder) and those bounced off a roughly 
cylindrical rock

▪ Goal: predict whether the object is mine or rock based on 
• The features (60 of them)  are the energy within a particular frequency band, integrated over a certain period of time
• The label: rock/mine



Note on implementation
Data normalization

Data normalization / feature scaling: Normalize features (bring them all to the same scale) 

Crucial step in preprocessing: 
▪ Many classifiers (e.g. KNN that we will see in next lecture) rely on distance metrics 
▪ Gradient descent will converge faster  
▪ Coefficients are penalized appropriately (in the case where regularization is applied)



Numerical features
Data normalization - Example

Normalization



Performance metrics for binary classification
Confusion matrix
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Performance metrics for binary classification
Accuracy, error rate, recall&

accuracy= En
error rate

= 2+ Cfp
N

recall
= +P

C
+ p
+ Cfn



Exercise
Performance metric for binary classification

• We have used two approaches to train classifiers for spam email detection: 
“non-spam” (class 0) and “spam” (class 1)


• Our test set has1000 emails, 900 of which were non-spam


• Approach 1: classified all data as non-spam


• Approach 2: classified 850 of non-spam emails as non-spam and 50 of spam 
emails as spam


• Write the confusion matrix of each approach


• Compute the error rate, accuracy and recall of each algorithm


• What do you conclude? 



Outline  34

▪ Overfitting/underfitting and regularization
• Connections to sensitivity and Lipschitz constant of the predictor
▪ Logistic regression
▪ differentiable and convex loss function
▪ Probabilistic interpretation 
▪ Performance metric different than the loss function

▪ Announcements:
• Exercise hour: logistic regression (notice data normalization - more about it next week)
• Check moodle for past year’s exams and quizzes


