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Lecture 03
30.09.2024

Regularized regression

Classification through
logistic regression
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Outline

» Qverfitting/underfitting and regularization
= Logistic regression

= Announcements:
» Check moodle for past year’s exams and quizzes
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=PrL Review of linear regression
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Underfitting and overfitting




=PFL Underfitting & Overfitting

Goal of supervised ML models: generalise well on new data (based on
the patterns learned from known data).

Ways ML can fall
- Underfitting - M ocle | \, 0 QH’Y\P\Q , Ao vav%/\ Q\o&u
» Overfitting
i

Underfitting Desired Overfitting



=PFL Underfitting & Overfitting
Overfitting

Q: What if the ML model is too complex?

Overfitting model:
- Fits well on training data
« Doesn't generalise well to unknown data.

Reason: the model is too complex — it fits the noises and errors.

Values =

The model passes by every data point but doesn’t capture the U shape of the data set.



=Tl Underfitting & Overfitting
Overfitting - Solutions

Solutions:

- Simpler model — fit the data and not the noises and errors.

» More training data (— less effect of noise)

- Add a regularisation term (common solution)

Goal: Find the equilibrium between fitting the training data and keeping the model
simple enough to ensure it will generalise well on new data.

Values .




=PrL sensitivity and Regularization

o Sensitivity of a predictor: similar data should lead to similar outcome

e |ess sensitive models tend to notoverfit -, 2" & K c
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=Pk Sensitivity of linear models

Motivation for regularization through Lipschitz constant of the predictor
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=PrL " Exercise - optimize a regularized loss function
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* Find the gradient of the regularized loss function with respect to the parameters
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 Next - how do we set the regularization parameteé A ?
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=P*L " Train, validate, test in ML

Setting hyperparameters: example, the regulariser

Your Dataset



=P Train, validate, test in ML

Setting hyperparameters: example, the regulariser

Your Dataset

Idea #1: Split data into train and test, choose BAD: No idea how

algorithm will perform
hyperparameters that work best on test data Or? new data ’




=P*L " Train, validate, test in ML

Setting hyperparameters

Your Dataset
Idea #1: Split data into train and test, choose Problem: No idea
how algorithm will
hyperparameters that work best on test data verform on new data

ldea #2: Split data into train, val and test,
choose hyperparameters on val and evaluate Better!
on test
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Train, validate, test in ML
Setting hyperparameters

Your Dataset

ldea #3: Cross-Validation : Split data into folds, try each fold as
validation and average the results

e e e e |
TN T I T T
T A I T T
T T I T T

Useful for small datasets




0 peruisd SN T el
AR g e 5
/\ (‘CU/&
Cla (‘alrv
‘:S" S ‘l\f?_/“f M{

Logistic Regression
(S o C\O(SQrQCCcLO//‘\ ’IL"EC}’\M/\ﬂIW -



=Pi-L

Classification

species
Chinstrap
Chinstrap
Gentoo
Chinstrap

Chinstrap

X\

Adelie

Palmer Penguins

X n

Gentoo

X o A 4

bill_length_mm bill_depth_mm flipper_length_mm body mass_g

Chinstrap

D)
h
‘\]

Flipper length (normalized)

-2 1 0 1
Bill length (normalized)

X

Based on dataset available here: https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris
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=Pk Logistic Regression ( by clussfcaken)

Characterize a classifier based on a linear model

Goal: find a line/hyperplane separating the classes \ Foz30
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=F*- Defining loss function for classification
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=Pl Logistic loss function

A differentiable and convex loss for binary classification
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Read more about logistic function/verify your gradient compytation here: https://en.wikipedia.org/wiki/Logistic_function
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=P*L Training - Minimizing the logistic loss function
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=Pi-L

EXxercise
. o | | do(z) .
Consider the sigmoid function 0 : R — (0,1), 6(2) = . Compute . Use the chain
]l +e% dz
do(z(w))
rule to compute y ,wherez =wy+wix; + ... + wyxzand. w = (Wy, Wy, ..., W)
W

Compute the gradient of the binary cross-entropy loss function with respect to the parameters

W= (Wg, Wi, «ver Wy)

You can check your answers with the notes in the python exercises this week.

22



=Pi-L

Probabilistic interpretation of logistic function

Consider the regression 0(z) = | + o2
' T..i
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=PFL

Probability distributions background
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=PFL

Cross entropy of a distribution relative to another
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=Pl Logistic loss

Interpretation as binary cross-entropy loss

By !nterpreting the logistic function as probability of a label, A | o q |
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=Tl Logistic regression output

Training set (95 examples)

e Chinstrap
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o
N
©
-
g
- c
Palmer Penguins 5
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species bill_length_mm bill_depth_mm flipper_length_mm body_mass_g ) ° °
e °
Chinstrap ' , , , , ,
-2 -1 0 1 2 3
Chinstrap I Bill length (normalized)

Gentoo
Chinstrap

Chinstrap

Adelie Gentoo Chinstrap

Flipper length (normalized)

-2 -1 0 1 2 3
Bill length (normalized)

Based on dataset available here: https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris
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=PrL | ogistic regression exercise this week

= Dataset 1: Void Formation in Welding, based on the paper

» Goal: formation of voids in friction stir welding as a function of the operation conditions
» Tool rotational speed, axial pressure
» The label: void or not void

Training set (60 examples)

y

Work piece

Tool shoulder

a Unaffected material
b Heat affected zone (HAZ)

¢ Thermomechanically
affected zone (TMAZ)

d Weld nugget (Part of
thermomechanically affected

Axial pressure (normalized)

Backing bar

Profiled pin

< 0
= O

zone) Rotation speed (normalized)

= Dataset 2: discriminate between sonar signals bounced off a mine (metal cylinder) and those bounced off a roughly
cylindrical rock

= Goal: predict whether the object is mine or rock based on

- The features (60 of them) are the energy within a particular frequency band, integrated over a certain period of time
* The label: rock/mine



=F*L " Note on Implementation

Data normalization

Data normalization / feature scaling: Normalize features (bring them all to the same scale)

Crucial step in preprocessing:

= Many classifiers (e.g. KNN that we will see in next lecture) rely on distance metrics

= Gradient descent will converge faster

= Coefficients are penalized appropriately (in the case where regularization is applied)
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Numerical features
Data normalization - Example

Training set (60 examples)
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Normalization

—

Bill length (normalized)

Training set, normalized (60 examples)

adelie
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-2 -1 0 1
Body mass (normalized)




='*L Performance metrics for binary classification

Confusion matrix
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Performance metrics for binary classification
Accuracy, error rate, recall
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Exercise
Performance metric for binary classification

We have used two approaches to train classifiers for spam email detection:
“non-spam” (class 0) and “spam” (class 1)

Our test set has1000 emails, 900 of which were non-spam
Approach 1: classified all data as non-spam

Approach 2: classified 850 of non-spam emails as non-spam and 50 of spam
emails as spam

Write the confusion matrix of each approach
Compute the error rate, accuracy and recall of each algorithm

What do you conclude?



=Pi-L

Outline

» Qverfitting/underfitting and regularization
 Connections to sensitivity and Lipschitz constant of the predictor
= Logistic regression
= differentiable and convex loss function
= Probabilistic interpretation
= Performance metric different than the loss function

= Announcements:
» Exercise hour: logistic regression (notice data normalization - more about it next week)
- Check moodle for past year’s exams and quizzes
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